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Summary

Starting with a test statistic for linkage analysis based
on allele sharing, we propose an associated one-
parameter model. Under general missing-data patterns,
this model allows exact calculation of likelihood ratios
and LOD scores and has been implemented by a simple
modification of existing software. Most important,
accurate linkage tests can be performed. Using an
example, we show that some previously suggested
approaches to handling less than perfectly informative
data can be unacceptably conservative. Situations in
which this model may not perform well are discussed,
and an alternative model that requires additional
computations is suggested.

Introduction

Linkage tests based on allele sharing are popular for
mapping susceptibility genes for complex traits (Weeks
and Lange 1988; Risch 1990a, 1990b; Whittemore and
Halpern 1994). Compared with traditional parametric
methods, these approaches have the advantage of not
having to specify an inheritance model explicitly. Build-
ing on this earlier work, Kruglyak et al. (1996) have
proposed a procedure, based on the idea of scoring func-
tions defined with respect to identity by descent (IBD)
sharing, that can be applied to an arbitrary mixture of
family structures. Most important, the procedure is in-
corporated into the computer program GENEHUNT-
ER, which performs multipoint calculations and hence
allows the full utilization of the information available
on descent, the inheritance pattern at every locus. How-
ever, the linkage test proposed by Kruglyak et al. is con-
servative when the descent information is incomplete,
which is nearly always the case, because it overestimates
the variance of the statistic that it uses. The amount of
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overestimation is severe when the information on de-
scent is very far from complete, in which case the pro-
cedure can be unacceptably conservative. Also, with tra-
ditional parametric procedures, when multipoint
calculations are performed, the LOD-score function can
be used to make comparisons among loci and to con-
struct confidence/support regions for the gene location.
The procedure of Kruglyak et al. does not provide that.
Following Whittemore (1996), we argue that any choice
of the scoring functions and the associated weighting
factors has an implicit underlying one-parameter alter-
native model for both the distribution of the inheritance
vector and sharing probabilities. Likelihoods and LOD
scores are defined with respect to this allele-sharing
model. In particular, we show that the LOD scores can
be easily computed for any general missing-data pattern,
by use of the standard output of GENEHUNTER. These
LOD scores can be used just like the traditional LOD
scores, for the purposes of constructing support regions
and comparing loci. Also, an accurate likelihood-ratio
test is then available for the purpose of assessing the
evidence for linkage. As an example, our approach as
implemented in a modified version of GENEHUNTER
is applied to data derived from a genome scan for
non–insulin-dependent diabetes mellitus (NIDDM) sus-
ceptibility loci in Mexican Americans (Hanis et al.
1996). Results of multipoint analyses of the chromo-
some 2 region providing evidence for the NIDDM1 locus
reveal that the likelihood-ratio test gives a P value more
than an order of magnitude smaller than that given by
the GENEHUNTER nonparametric-linkage (NPL) anal-
ysis. An analysis of a chromosome 2 framework map in
which markers are ∼20 cM apart illustrates additional
advantages of our method. With the framework map,
our LOD scores tend to curve upward between markers,
as do traditional parametric LOD scores. By contrast,
the NPL scores tend to curve downward between mark-
ers, a consequence of the lack of adjustment for incom-
plete information. We also point out that special care is
required when data sets consisting of a small number of
pedigrees are analyzed, because of the potential break-
down of asymptotic approximations.

Data and Scoring Functions

The data will, in general, consist of m pedigrees and
genotype data on some markers for some pedigree mem-
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bers. With complex diseases, each pedigree will usually
have two or more affected individuals. The family struc-
ture and pattern of affecteds can be quite complex and
completely different for different pedigrees. However,
because of the computational demands of multipoint
calculations, there is a limitation to the size of a pedigree.
With GENEHUNTER, the upper bound is ∼12 non-
founders (Kruglyak et al. 1996). On the other extreme,
the procedure can also be applied to sib-pair data for
which each pedigree is a family of two parents and two
affected children. Under the null hypothesis (H0) that a
locus is not linked to a disease-susceptibility gene, the
statistical behavior of the number of alleles IBD among
individuals depends only on their relationships to each
other, as determined by the pedigree structure, and not
on their disease status. For a locus that is linked to a
disease-susceptibility gene, there is expected to be an
increase in the number of alleles IBD among the affect-
eds, relative to null expectation. Testing for linkage be-
comes testing for excess sharing. The magnitude of the
excess will, in general, depend on the mode of inheri-
tance and on the distance between the linked locus and
the disease-gene locus. However, with complex diseases,
the mode of inheritance is unknown, and it may some-
times be easier to model the degree and the direction of
excess directly.

Consider any locus that is not necessarily a marker
locus but that has one or more markers in the neigh-
borhood. For pedigree i let Si be some function that is
defined on the basis of IBD sharing at this locus among
the affecteds. Following the suggestions of Whittemore
and Halpern (1994), Kruglyak et al. (1996) implemented
the two scoring functions, Spairs and Sall, in GENEHUNT-
ER. Spairs is simply the number of pairs of alleles from
distinct affected pedigree members that are IBD. In com-
parison, Sall puts extra weight on three or more affecteds
sharing the same allele IBD. For the exact definition, the
reader is referred to the above-mentioned articles. In
general, Si can be any function that has a higher expected
value under linkage than under no linkage. In theory,
the definition of Si can also involve allele sharing—or
lack of sharing—between affecteds and unaffecteds.
Some comments on how to choose Si will be given below.
Here, suppose that the choice of Si has been made. The
standardized form of Si is defined as

S � m S � mi i i i
Z � � ,i 2� jj ii

where . Note that Zi has mean 0 and var-m � E(S d H )i i 0

iance 1 under H0. Consider a linear combination

m� g Zi i
i�1Z � ,

m

2�� gi
i�1

where gi x 0 are weighting factors. The denominator
of Z ensures that Z has variance 1 under H0. It is obvious
that the gi are relative in the sense that they are only
important up to a multiplicative constant. Indeed, Krug-
lyak et al. added the constraint , so that Z re-2Sg � 1i i

duces to SigiZi. We prefer not to have that constraint,
to simplify exposition in some discussions. For large m,
the distribution of Z under H0 can be approximated well
by the standard normal distribution, and approximate
(one-sided) P values can be computed on the basis of
that, if Z is directly observed. Since normal approxi-
mation can break down with a small sample size, GENE-
HUNTER, with some additional computations, provides
an exact P value by enumerating the distribution of Z
under H0. The optimal choice of the gi, from the aspect
of maximization of power, will, in general, depend on
many factors, including the mode of inheritance. Some
comments on the choice of gi will be given below.

In general, the information on descent is incomplete,
and the Zi and, hence, Z are not fully determined by the
data. However, and

— —
S � E(S d data, H ) Z � E(Z di i 0 i i

can always be computed from
—

data, H ) � (S � m )/j0 i i i

the observed data. (Here we follow the notation of Krug-
lyak et al., but the reader should be warned that and

—
Si

are expectations computed with respect to a distri-
—
Zi

bution and are not sample averages.) With GENE-
HUNTER, the conditional expectation is computed by
use of all marker data available and is, in general, a
multipoint calculation. Also note that the expectation is
conditional on the null hypothesis of no linkage. If the
data do not determine Zi, then the expectation condi-
tional on an alternative of linkage is different and, in
general, higher. (From here on, when it is not explicitly
noted otherwise, expectations and variances are under
H0.) Kruglyak et al. propose the statistic

m

—� gZi i— i�1Z � ,
m

2�� gi
i�1

which is referred to as the “NPL score.” They note that,
under H0, E is still 0 but that the variance of and,

— —
(Z) Zi

hence, the variance of will, in general, be !1. However,
—
Z

they recommend the continued use of the standard nor-
mal distribution—or of the exact distribution of Z—as
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references to produce a P value. They call this the “per-
fect-data approximation” and note that this will, in gen-
eral, be a conservative procedure.

How conservative the procedure is depends on how
imperfect the information on descent is. That informa-
tion is often far from complete, which can be caused by
various combinations of (1) many untyped members, (2)
low heterozygosity of markers, and (3) wide spacing of
markers. Performing multipoint calculations certainly is
an advantage, since it allows the full utilization of the
information available. However, since linkage analyses
span such a wide spectrum, it is not difficult to find any
real examples in which the perfect-data approximation
is unacceptably conservative. To eliminate the conser-
vativeness, we propose a likelihood approach.

A One-Parameter Allele-Sharing Model

At a particular location, not necessarily a marker lo-
cus, for pedigree i, let ni denote the inheritance vector
that can assume Ni configurations. (ni contains all in-
formation on descent. In particular, the number of alleles
distinct by descent is equal to two times the number of
founders. For each nonfounder, the inheritance vector
determines which two of the founder alleles were in-
herited.) Under H0, each configuration has the same
probability, , and so and�1 2c � N m � Sc S (w) j �i i i i i i

. (Our notation here uses w to denote2 2[� c S (w)] � mw i i i

a configuration of ni. Sums are over all the possible con-
figurations of ni.) Now suppose that a single-parameter
alternative model is introduced with d as the free pa-
rameter. Let d be chosen so that corresponds tod � 0
H0 and so that corresponds to the alternative ofd x 0
excess sharing. For each w, let beP(w Fd) � P(n � w Fd)i i

the probability specified by the model. If the ni can be
directly observed, then the log likelihood is simply

. We can then find the maxi-ml (d) � � ln [P (n d d)]i�1 i i

mum-likelihood estimate of d and use the likelihood-
ratio x2 statistic to test . However, our infor-H :d � 00

mation on descent is, in general, incomplete, and ni can-
not be determined by the data. Indeed, suppose that we
are restricted to procedures that use only the values

—
Zi

computed by GENEHUNTER. Remarkably, there exists
a class of models for which the log likelihood l(d) �

can be written on the basis of only theln[P(all data Fd)]
. The probabilities of ni are in the form

—
Zi

P(wFd) � P(n � wFd) (1)i i

dg [S (w) � m ]i i i� P(n � wFH ) 1 �i 0 { }ji

dg [S (w) � m ]i i i� c 1 � ,i { }ji

and the gi are weighting factors that in theory can be

chosen on the basis of the pedigree structures. With this
model, it is proved in appendix A that the log likelihood,
for the sums of the m pedigrees, is

m

—
l(d) � C � � ln[1 � dg (S � m )/j ]i i i i

i�1

m

—( )� C � � ln 1 � dgZi i
i�1

m

( )� C � � ln 1 � dT ,i
i�1

where and C is the constant that depends on
—

T � gZi i i

the data but not on d. In contrast with equation (1), here
Si(ni) is replaced by , and one might think that we are

—
Si

simply providing an approximation to the log likelihood,
but that is not the case. We emphasize that, with any
missing-data pattern, this is the exact log likelihood,
which of course has to coincide with the complete-data
log likelihood when ni happens to be determined by the
data. Other properties of model (1), including its rela-
tionship with the test based on the NPL score, will be
discussed later. Here, suppose that we accept it as an
appropriate model. Let ai be the smallest theoretically
possible value of Si. For not to be assigned aP(S � a )i i

negative value, d is bounded above by b � j /[g (m �i i i i

. This implies that the legitimate range of d is betweena )]i

0 and .b � min bi i

Let 0 X X b be the maximum-likelihood estimated̂

of d. Then

m

ˆ ˆ2[l(d) � l(0)] � 2 � ln(1 � dT )i
i�1

is the x2 statistic with 1 df for testing . SinceH :d � 00

our test is one sided ( ), defined 1 0

ˆ� ( )[ ]( )Z � 2 l d � l 0 .lr

With large N, when , the P value can beˆZ 1 0(d 1 0)lr

approximated by , where F is the cumulative1 � F(Z )lr

distribution of the standard normal distribution.
So far, we have suppressed the role of the location.

For a location x, let l(x,d) be the joint log likeli-
hood—that is, the log of the probability of the data
computed under the assumption that x is the gene lo-
cation and d is the amount of deviation of the distri-
bution of ni from its null distribution, a measure of the
gene effect. Let be the maximum-likelihood estimated̂x

of d conditional on x; then
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m

ˆ ˆl(x, d ) � l(x, 0) � � ln[1 � d T (x)] .x x i
i�1

For any two loci x and y, , since, if al(x, 0) � l(y, 0)
gene has no effect, it does not matter where it is. (Note
that this is only true if the same data are used to calculate
both, and hence multipoint calculation is of utmost im-
portance.) So

ˆ ˆ ˆl(x, d ) � l(y, d ) � [l(x, d ) � l(x, 0)]x y x

ˆ�[l(y, d ) � l(y, 0)]y

m

ˆ� � ln[1 � d T (x)]x i
i�1

m

ˆ� � ln[1 � d T (y)] .y i
i�1

Hence

m
ˆ� ln[1 � d T (x)]x ii�1∗LOD (x) �

ln(10)
m

ˆ� ln[1 � d T (x)]x ii�1≈
2.3

is the LOD score with respect to model (1).
Clearly, and∗�Z (x) � LOD (x) # 2 ln(10)lr

, where Zlr(x) denotes Zlr
∗ 2LOD ( x) � Z (x) /2ln (10)lr

evaluated at location x.
Our LOD score LOD*(x) is very similar to the LOD

scores obtained in a traditional parametric analysis (e.g.,
in fitting a dominant model). One slight difference is
that in traditional parametric analysis the LOD score as
a function of x is usually plotted with the parameters
(i.e., penetrances and disease-allele frequency) having the
same values for all the locations. In our case, is, ind̂x

general, different at different locations and LOD*(x) is
always non-negative. A situation in which one may con-
sider calculating LOD*(x) with a fixed value of d, in
which case LOD*(x) can be negative, is exclusion map-
ping. However, more work has to be done to ensure that
results from such analyses can be appropriately
interpreted.

Example

In order to illustrate the differences between the results
that would be obtained by use of the NPL score of Krug-
lyak et al. (1996) and those that would be obtained by
the test statistic Zlr that we propose, we have modified
GENEHUNTER to calculate LOD* and Zlr, in addition

to the NPL score . Both a brief description of this
—
Z

modified version of GENEHUNTER and information
on obtaining it via an anonymous ftp site are provided
in appendix B. As an example data set, we have analyzed
the chromosome 2 data first reported, by Hanis et al.
(1996), in a genomewide scan for NIDDM susceptibility
loci in Mexican Americans. The data include 170 sib-
ships each having at least two affected sibs but no par-
ents and no unaffected sibs and are described in more
detail in the original article. The original full chromo-
some 2 map included 50 markers, but many regions were
densely mapped because (1) there was insufficient in-
formation with the initial map, (2) there was some ev-
idence for linkage with the initial map, or (3) there was
a candidate gene(s) in the region. Therefore, in addition
to the full chromosome 2 map, to mimic what is usually
encountered in the first stage of a genomewide scan, we
have constructed a framework map, using a subset of
the original markers. There are 16 loci in the framework
map, which has a resolution of ∼20 cM. Figure 1 sum-
marizes the results of the analyses of the full map (fig.
1a–c) and the framework map (fig. 1d–f) for the chro-
mosome 2 data. In these analyses, we report results from
use of the scoring function Sall with equal weighting (gi

� constant), noting that results obtained from use of
Spairs differ only trivially from these. And, although all
markers were used in the multipoint calculations, the
figures focus on the 2qter region where the most signif-
icant results are observed. In figure 1, for the two maps,
respectively, panels a and d compare the NPL score

—
Z

and Zlr; panels b and e make comparisons in the LOD-
score scale, with the dotted line corresponding to /

—2Z
2ln(10); and panels c and f display the information sta-
tistic of Kruglyak et al. Although there were no parents
available for genotyping, the markers are sufficiently
polymorphic that the information statistic rarely is !.5,
even for the framework map. However, even in the full
map, the information statistic rarely is 1.8. With the full
map, the NPL score and Zlr are quite comparable in
regions for which there is little evidence for linkage. But,
as the evidence for linkage increases, the conservative-
ness of the NPL score becomes apparent. Indeed, when
the P values from the NPL score are used, the 2qter
location having the strongest evidence for linkage when
the full map is used does not achieve a level of signifi-
cance sufficient, in the context of a full genome scan, to
establish a susceptibility locus ( ,

—
Z � 3.75 P � 8.8 #

). However, at the same location, the�5 �510 1 2 # 10
P value associated with the Zlr statistic is comfortably
within the guidelines suggested by Lander and Kruglyak
(1995) ( , ,∗ �6LOD � 4.16 Z � 4.37 P � 6.2 # 10 !lr

). (For simplicity, the P values reported here�52 # 10
are all based on normal approximation. However, we
have used GENEHUNTER to check that, for these fam-
ilies, the exact and normal approximation P values are
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Figure 1 Linkage analysis of NIDDM, for chromosome 2. Shown are results from the full marker map (50 markers) (a–c,) and results
from the framework map (16 markers, ∼20 cM between adjacent markers) (d–f). These are multipoint calculations using all the markers
simultaneously, although the results presented focus on the 2qter region. The units of the x-axis are centimorgans. a and d, Zlr and NPL score

, plotted for comparison. b and e, Comparisons made under the LOD-score scale. The two curves are LOD* and /2ln(10). c and f, Information
— —2Z Z
content. Note that the peaks correspond to marker locations.

very close for P values in this range, which is not sur-
prising, since the number of families is large. As will be
discussed below, the use of normal approximation can
be quite problematic when the data set consists of only
a small number of pedigrees.) Note that, although the
ratio between Zlr and is only , be-

—
Z (4.37/3.75) � 1.17

cause of the tail behavior of the normal distribution, the
ratio of the P values is ∼14. With the framework map,

because the information is far from complete, is sub-
—
Z

stantially lower than Zlr everywhere. The biggest differ-
ence occurs at location 263 cM, where (

—
Z � 1.83 P �

) and ( , ).∗ �4.033 Z � 3.29 LOD � 2.35 P � 5.0 # 10lr

The ratio of the P values is 69. Moreover, as seen in
panels d and e of figure 1, even the general shapes of
the curves confirm that the NPL score is not fully util-
izing the information available, since the NPL curves
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trough between markers. This is due to the fact that the
information is more incomplete for a location midway
between two markers than it is for a location close to
a marker and that no adjustment for incomplete infor-
mation is taken. In contrast, the Zlr and LOD* curves
conform to the more traditional curves obtained for par-
ametric linkage analyses. Most important, with the
framework map, the NPL score is sufficiently conser-
vative that this region might not be assigned much pri-
ority for the additional follow-up that could greatly in-
crease the evidence for linkage. The additional
calculations did not add detectably to the computational
time in GENEHUNTER.

More on the Model

A model in the form of model (1) can be found in a
report by Whittemore (1996), although there the model
is presented in a setting where the pedigrees are assumed
to have identical structures and phenotype patterns.
Also, the model there allows for more than one param-
eter, an issue on which we will comment below, in the
Additional Parameters section. Following the results in
Whittemore, one can easily see that

m m

—′l (0) � � T � � gZi i i
i�1 i�1

and that the classical score statistic (Cox and Hinkley
1994) is

m

′ � Tii�1l (0)
�′′ m�E[�l (0)FH ]0 � [ ]Var � Tii�1

m —� gZi ii�1
� .

m —2�� g Var[Z ]i ii�1

With perfect data, and the score statistic is
—
Z � Zi i

. For regular statistical problems,2�Z � � g Z / � gi i i i i

the score statistic has a standard normal distribution
asymptotically ( ), and the test based on it ism r �
asymptotically equivalent to the test based on the like-
lihood-ratio statistic. For example, in our case, if m is
large and but not very large, then the observedd̂ 1 0
value of Zlr is expected to be close to the observed value
of the score statistic. Sometimes the score statistic is used
instead of the likelihood-ratio statistic, because it does
not require the evaluation of and is hence computa-d̂

tionally simpler. Indeed, with the application here, if the
data were complete, then Z would be slightly easier to
compute than Zlr. However, the situation is entirely dif-
ferent with incomplete data. Here, Zlr can still be easily

computed. By contrast, the evaluation of the score sta-
tistic requires that multipoint simulation be performed,
in order to determine Var[ ]. Approximating Var[ ] by

— —
Z Zi i

(perfect-data approximation) can, as weVar[Z ] � 1i

have demonstrated, lead to very conservative results.
For pedigree i, let be the mean of Si underm � E(S Fd)id i

the alternative model specified by model (1). So, m �i

, andm i0

m � m � (dg /j ) � c S (w)[S (w) � m ]id i i i i i i i
w

� m � (dg /j ) � c S (w)S (w) � m � c S (w)i i i i i i i i i{ }
w w

2 2{ }� m � (dg /j ) E[S (w)] � mi i i i i

2�m � (dg /j )ji i i i

� m � dg j .i i i

In other words, for the various Si, when their means
deviate from the null, model (1) specifies that the de-
viations are proportional to jigi. Note that the model
does not specify the exact deviation of the mean of an
individual Si, because d is a free parameter; it does, how-
ever, specify the relative sizes of the deviations. Notice
that , so the deviations of the standardizedE(Z Fd) � dgi i

forms are proportional to gi, the weighting factors.
Hence, in vector form, we can think of AgjS and AgS as
the directions of deviations of the means of Si and Zi,
respectively. The test using Zlr will be fully efficient (most
powerful) if this is the actual direction of deviation. We
note that the test is still valid even if the true deviations
do not satisfy the constraint specified by model (1). The
test is model free in that sense. The penalty will be some
loss of power.

For a particular pedigree i, model (1) specifies that

P[S (w) � kFd]i � 1 � (dg /j )(k � m ) ,i i iP[S (w) � kFH ]i 0

so the relative change of is proportional toP[S (w) � k]i

. Consider affected (full) sib pairs with .k � m S � Si i pairs

(We note that, for affected sibships that have either two
or three affected sibs with the parents classified as un-
knowns or unaffecteds, Spairs and Sall are equivalent after
standardization.) Here , , and .�a � 0 m � 1 j � 1/2i i i

Under model (1) , the probabilities of sharing 0, 1, and
2 alleles are, respectively, (1/4)[ ], (1/2), and1 � (dg /j )i i

(1/4)[ ]. The chance of sharing one allele does1 � (dg /j )i i

not change, because the expected number of alleles
shared is 1 under H0. As noted by Whittemore (1996),
this corresponds to the additive genetic model. Maxi-
mum deviation corresponds to and to shar-d � b � j /gi i i

ing probabilities 0, 1/2, and 1/2, respectively, corre-
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sponding to IBD sharing of 75%. In general, if the data
set consists entirely of affected sib pairs and the gi are
set to 1, then is the proportion ofm /2 � (1/2) � (dj /2)id i

alleles IBD in the population of affected sibs (j �i

). So is the maximum-likelihood es-ˆ�1/2 (1/2) � (d j /2)x i

timate of the proportion of alleles shared under the ad-
ditive model at location x. We understand that this es-
timate is now implemented in the program SIBPAL of
the SAGE (1994) package (R. Elston, personal com-
munication). With missing data, the previous estimate
of the proportion of alleles IBD that is given by SIBPAL
is negatively biased with incomplete information.

In general, because of the bound on d, model (1) does
restrict the amount of possible deviation. This restriction
is irrelevant when the apparent excess sharing is modest,
as is expected for most data on complex diseases. (It is
to be noted that, even with modest excess sharing, very
significant results can be obtained with large sample
sizes, as can be seen with the Hanis et al. data.) The
bound on d becomes relevant when extreme excess shar-
ing is observed in a data set with a small number of
pedigrees.

Small Number of Families

With a large number of pedigrees, the P value can be
well approximated by applying normal approximation
to Zlr. Normal approximation may not work well when
the data set consists of only a small number of pedigrees
and very high sharing is observed. In this case, applying
normal approximation to Zlr can give a very conservative
P value. The reason is that d has an upper bound that
does not allow model (1) to represent very excessive
sharing. When is equal or very close to the upper boundd̂

of d, normal approximation is unreliable. As an illus-
tration, consider a single pedigree with five affected sibs.
Suppose that all five sibs have inherited the same allele
IBD from each of the parents and that the information
is complete. The chance of this under H0, which is also
the exact P value, is . For scoring func-8(1/2) � .0039
tions Spairs and Sall, Zlr is 1.84 and 1.92, respectively, and
in both cases the likelihood is maximized at the upper
bound of d (with , for both scoring func-ˆg � 1 d � b � 1
tions). Normal approximation gives P values of .033 and
.027, respectively, which are much too large. It is inter-
esting that this same example also illustrates the problem
of applying normal approximation to the NPL score,
but the breakdown is in another direction. For Spairs and
Sall, the NPL score Z is 4.472 and 5.314, respectively.
Normal approximation gives P values of �63.9 # 10
and , respectively, which are orders of mag-�85.4 # 10
nitude too small. This is because the distribution of Z,
with either scoring function but particularly with Sall,
has a very long right tail that is not approximated well
by the standard normal distribution. Although this ex-

ample is an extreme case, a similar phenomenon can be
seen with data consisting of a modest number of nuclear
pedigrees with very high observed sharing. The P value
computed by GENEHUNTER on the basis of the exact
distribution of Z is designed for such circumstances. The
problem is that it is conservative when there is missing
information. With Zlr, because the overall bound on d

is the minimum of the bounds of the individual pedi-
grees, the problem can be particularly serious when the
pedigrees are of very different structures and sizes. One
should be aware that the P value obtained by normal
approximation is probably conservative when is equald̂

or very close to the bound.
When very high sharing is observed in a small number

of pedigrees and the information is far from complete,
getting a good approximation of the P value without
extensive simulation is difficult. Here we give some pre-
liminary results of an approach that we are currently
researching. Instead of model (1), consider the model

dg [S (w) � m ]i i iP(n � wFd) � P(n � wFH )r(d) expi i 0 i { }ji

dg [S (w) � m ]i i i� c r(d) exp ,i i { }ji

where

�1dg [S (w) � m ]i i ir(d) � c � expi i { }( )jw i

is the renormalization constant that ensures that
. Zlr(x) and LOD*(x) can be simi-S P(n � w d d) � 1w i

larly defined. We will call this the exponential model
and will call model (1) the linear model. When d is small,

is approximatelyexp{dg [S (w) � m ]/j } 1 � {dg [S (w) �i i i i i i

, and the two models are very close. Indeed, it canm ]/j }i i

be shown that the score statistic corresponding to the
exponential model is exactly the same as the score sta-
tistic of the linear model that we gave earlier. The ex-
ponential model has several nice properties not shared
by the linear model. First, with complete data, the NPL
score Z is the sufficient statistic and Zlr is a monotonic
function of Z. Hence the test based on Z is equivalent
to the test based on Zlr, without having to appeal to
asymptotics. Most important, with the exponential
model, d does not have an upper bound. When ,d r �
the probabilities are concentrated on w with Si(w)
achieving the maximum possible value of Si. For ex-
ample, with sib pairs, as . How-P(S � 2) r 1 d r �i

ever, the exponential model lacks the special missing-
data property of the linear model. In particular, with
missing data, l(d) cannot be written down just on the
basis of the conditional expectations . Instead it re-

—
Zi

quires the entire conditional distributions of the Zi.
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Hence, evaluating l(d) and Zlr for the exponential model
is computationally more intensive, but it is not insur-
mountable. We expect to have a computer program
ready for distribution in the very near future. With a
working program, we have computed Zlr for the Hanis
et al. data by using the exponential model, and the re-
sults are very similar to those computed by use of the
linear model. This is expected, because of the large num-
ber of families.

In contrast to the linear model, the exponential model
can provide a very good fit to data consisting of a small
number of pedigrees with very extreme IBD sharing.
However, the application of normal approximation to
Zlr can remain problematic. Consider the previous ex-
ample of the five affected sibs with perfect IBD sharing.
With either scoring function, , and normalZ � 3.33lr

approximation gives . This P value is tooP � .00043
small, although it is much better than those obtained by
application of normal approximation to the NPL scores.
This is because the distribution of Zlr is skewed, but
much less so than the distribution of Z. We are currently
working on methods that are based on the exponential
model and that can provide suitable adjustments to the
P-value approximations.

Additional Parameters

We have so far considered a single-parameter alter-
native model. It is, however, quite easy to introduce extra
parameters into the model. For example, there may be
two types of affected relative pairs (or the same type of
relatives but with data collected from two different pop-
ulations). Specifying the weights corresponds to speci-
fying the ratio of excess sharing. An alternative is to set
gi to be 1 for one type of affected pairs and to let gi of
the other type of affected pairs be a free parameter. To-
gether with d, we will now have two free parameters in
the maximization. Of course, if that is done, the asso-
ciated df of the likelihood-ratio test will increase to 2.
(Actually, with a one-sided test, asymptotically, the P
value can be approximated by one-half of the tail area
of a x2 distribution with 1 df plus one-quarter of the tail
area of a x2 distribution with 2 df.) In general, even with
completely different pedigrees, one can think of creating
several groups of pedigrees on the basis of similarities
in the pedigree structure and in the number of affecteds,
and each group can have its own g treated as a parameter
to be fitted. In another direction, when there are covari-
ates, one can have a model relating gi to the covariates,
with parameters to be fitted. Extra parameters can also
be introduced through the Si (Whittemore 1996). For
example, one can have , where′ ′′ ′S � aS � (1 � a) S Si i i i

and are two different scoring functions and a is a free′′Si

parameter to be fitted. For example, with sib pairs, in-
troducing an extra df can allow us to have a full model

for the sharing probabilities, instead of the additive
model. It is emphasized that fitting these more compli-
cated models does not require multipoint calculations
that are different from or additional to those currently
performed by GENEHUNTER. Hence the extra com-
putational cost will be modest. Currently, we feel that
the addition of more parameters is more important at a
later stage, after linkage has been detected. Then data
on additional markers in the region of interest would
probably have been collected, and there might even be
data on additional pedigrees. Having a model with one
or two extra parameters that fits the data better can
increase the resolution for localization. However, at the
stage of testing for linkage, there is much to be said for
having a 1-df alternative. For example, with sib pairs,
if the true deviations from the null are not very large,
then, even if they do not satisfy the additive model ex-
actly, a likelihood-ratio test based on the additive model,
apart from being simpler, will probably have more
power, in many circumstances, than one based on the
full model with df somewhere between 1 and 2 (Hol-
mans 1993). In general, with a limited amount of data,
one can lose power even with a more correct model,
because one has to pay the price for the additional df.

Discussion

The power of a linkage test based on IBD sharing
depends on two factors. The first factor is the choice of
the scoring function(s) and weighting factors. The sec-
ond factor, which is the main focus of this paper, is how
to appropriately evaluate the statistical significance,
given that choice. Whittemore (1996) demonstrates the
correspondence between the NPL score and the score
statistic of model (1). This relationship can be used to
argue that the test based on the NPL score is not really
model free. We take advantage of the relationship and
the special incomplete-data property of the model, to
derive a test, based on the likelihood ratio, that is ac-
curate in the sense that it does not have the tendency to
severely overestimate the P value. Moreover, the model
allows us to obtain a LOD-score curve that can be used
for the localization of the gene after the detection of
linkage.

The optimal scoring function(s) and weighting factors
will, in general, depend on the mode of inheritance and
the ascertainment scheme. Since, for a complex trait, the
mode of inheritance is usually unknown, the general
strategy should be to choose the scoring function and
weighting factors so that they will be close to optimal
for a wide range of plausible modes of inheritance. The
choice of the scoring function is currently an active area
of research (Whittemore and Halpern 1994). For pedi-
grees that have two or three affecteds, Teng and Sieg-
mund (1997) have provided some useful results for
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choosing both Si and gi.. However, how to choose the
scoring functions and weighting factors when a data set
consists of pedigrees of various sizes and structures re-
mains a challenging problem.

Although we appreciate the importance of the scoring
function and the weighting factors, on the basis of our
limited experience, those choices have a smaller effect
on the LOD scores than does the specification of the
penetrances in a traditional parametric analysis. For ex-
ample, with the Hanis et al. data, we have tried both
scoring functions, Spairs and Sall, and have also tried var-
ying the weights according to sibship sizes; and the re-
sults do not change by a very substantial amount. This
may be mainly because the Hanis et al. data consist only
of sibships. However, this is also at least partly due to
the fact that the value of d, a measure of the gene effect,
is estimated, at every location, to maximize the likeli-
hood/LOD score. One may think of the scoring function
and the weighting factors as the model and think of d

as the parameter. The implication is that, with complex
traits, many different allele-sharing models, given an ap-
propriate choice of the parameter value, can fit the data
reasonably well.

Appendix A

Consider a single pedigree i. Let L(w) �
, making the important as-P(data Fw, H ) � P(data Fw)0

sumption that the distribution of the data on all markers,
given the inheritance vector at the gene location, no
longer depends on the actual distribution of the inher-
itance vector. (For example, with a sib pair, given that
we know which one of the four IBD sharing possibilities
has occurred at the assumed gene location, the distri-
bution of the data no longer depends on the actual shar-
ing probabilities.) The application of Bayes’s rule results
in

P(dataFw)P(wFH )0P(wFdata, H ) �0 � P(dataFh)P(hFH )0h

L(w)ci� � L(h)cih

L(w)
� ,

W

where . It follows thatW � � L(h)h

—
S � E(SFdata, H )i i 0

� � S (w)P(wFdata, H )i 0
w

� S (w)L(w)iw
� .

W

Under the alternative model,

P(dataFd) � � P(dataFw)P(wFd)
w

� � L(w)c {1 � dg [S (w) � m ]/j }i i i i i
w

� c � L(w) � c (dg /j ) � S (w)L(w)i i i i i[ ] [ ]
w w

�c (dg /j )m � L(w)i i i i [ ]
w

—
� cW[1 � (dg /j )(S � m )]i i i i i

—
� constant # [1 � (dg /j )(S � m )] .i i i i

Hence, under this alternative model—and for this alter-
native model only—the likelihood function with respect
to the imperfect data depends only on . The overall

—
Si

log likelihood, ln[P(all dataFd)], which takes all m ped-
igrees into account, is

m

—
l(d) � C � � ln[1 � dg (S � m )/j ]i i i i

i�1

m

—
� C � � ln(1 � dgZ )i i

i�1

m

� C � � ln(1 � dT ) ,i
i�1

where C is the constant that does not depend on d.

Appendix B

A modified version of GENEHUNTER is available via
anonymous ftp at galton.uchicago.edu in the /pub/kong
directory. A tarfile containing a compiled version for a
SUN SPARC running SUNOS 2.x is supplied, as well as
the complete (modified) sources.

One additional command is implemented in the mod-
ified version, the “kac” command. This command,
which can be issued only after a successful “scan,” pro-
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duces an output file with a listing of the various statistics
(NPL score, Zlr, and LOD[1]) described in this paper,
for each GENEHUNTER evaluation location. Currently,
just like GENEHUNTER, only Spairs or Sall with equal
weighting is allowed. The on-line help file and user man-
ual have been modified to include instructions on the
use of this new “kac” command.
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